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ON THE PERIODIC RESONANT SOLUTIONS OF THE HAMILTONIAN SYSTEMS 
GENERATING FROM THE POSITION OF EQUILIBRIUM* 

A.P. MARKREV and T.N. CHEKHOVSKAIA 

A method is proposed of constructing and investigating the stability of periodic 
solutions of a canonical system of differential equations generating from the posi- 
tion of equilibrium. It is assumed that the system is almost autonomous and that 
a resonance exists in the forced oscillations. The investigation is based on apply- 
ing to the Hamiltonian function a series of canonical changes of variables contain- 
ing a small parameter. These changes make it possible to pass, in the finite 
approximation with respect to the small parameter, from the initial nonautonomous 
system with n degrees of freedom to an autonomous system with one degree of freedom. 
A constructive procedure is given for formation and study of the periodic solution, 
requiring only the computation of the coefficientsofthenormal formoftheHamilton- 

ian function. 

1. Let us consider a system of canonical differential equations 

“4( ar “Vi ar 
dt- --, arli at=--ae, (i = 1 1 . ..> n) (1.1) 

Here Siy rli are the canonically conjugated coordinates and impulses, and t is an independent 
variable. We shall assume that the Hamiltonian function r depends on the small parameter p. 
When p=O, it determines the autonomous system of differential equations with the position 
of equilibrium gi = ni = 0. Let the function I? be also analytic relatively to gi,ni and p in 
the neighborhood of their zero values, where it can be written in the form 

In the Hamiltonian (1.2) the dots denote terms of at least third order in p, tit ni andatleast 
fifth order in Sit qi ; the coefficients ~v~...v,ti~...~,r A,, B,, csi, psi are constants and Y,, pi are 
nonnegative integers. We assume that when I* = 0 , then the system (1.1) contains no reson- 
ances up to and including the fourth order, i.e. that the following relation holds: 

(1.3) 

for all integral mi satisfying the inequality within the brackets. Here Oi denote the eigen- 
frequencies of the system linearized in the neighborhood of the position of equilibrium and 
defined by the Hamiltonian r2. Then a real canonical transformation 5i7 qi -+qi7 pi, r -*If 

exists analytic in &,qi and reducing the Hamiltonian function (1.2) to its normal form /1,2/: 
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(1.4) 

Here lij>ssi, b,t are constants coefficients and Zij = lji,and the quantities (Ti = +1 are obtain- 
ed in the course of normalization of rz. 

Let us first consider the system described by the Hamiltonian functionBz -i- pH,(pfO). 

Then the corresponding equations are linear and admit the following particular periodic solu- 
tion: 

(1.5) 

From this it follows that if the frequency w,=ni,, where ,v,is a natural number,andatleast 
one of the quantities 

f (urn) = - (J,.h.b~, + blN.aZm, g (%,,) = %,Axv,%,, i B,v.bam (1.6) 

does not vanish, then the formulas (1.5) do not describe the motion in a linear system. In 
this case we have a resonance in the forced oscillations. 

The problem of constructing periodic solutions in the case of a resonance appearing in 
the forced oscillations has been studied in great detail in /3-ll/forthegeneral typeof dif- 
ferential equations systems. Below we propose a method of analysing the periodic solutions 
of the Hamiltonian systems which are almost autonomous, An algorithm is given for construc- 
tion and study of periodic solutions, based on the normalization of the Hamiltonian function. 
The analysis of the solution requires only the knowledge of the coefficients of the normal 
form. Moreover the problem of normalizing the Hamiltonian function does not present any dif- 
ficulties. The classical Birkhoff algorithm /l/ is well known. At present the DePree -Hori 
normalization algorithm is widely used. A number of programs have been written for this 
algorithm, for computing the coefficients of the normal form on a digital computer (*). We 
note that the problem of investigating the periodic solutions of the almost autonomous 
Hamiltonian systems was studied earlier ( **) under the assumption that the Hamiltonian func- 
tions have symmetry properties. 

2. Let w, =Iv, + E( 1~ /<f) and (0~ (i = I,...,% i=#m) have no integers, and let at 
least one of the quantities (1.6) be nonzero. To obtain a periodic solution in this resonant 
case, we must take into account the terms of the equation of motion nonlinear in qi and pi. 
We perform, in the system with the Hamiltonian (1.4), the variable change qi =: &* -i_ &', pi = 

pi* + Pi' (i =; 1, . . ., n) where qi* and pi* are given by the formula (1.5) and the terms containing 
k =N, are eliminated from the sums (1.5) where i = m . The above variableschangecancels 
in the Hamiltonian H, the nonresonant terms (of frequency different from N,). Inthevariables 
pi', ~t'the Hamiltonian function assumes the following form: 

(2.11 

*) Markeev A-P. and Sokol'skii A.G. Certain computational algorithms for normalizing the 
Hamiltonian systems. Preprint In-ta prikl. matematiki Akad. Nauk SSSR, Moscow, No.31, 1976. 
**) Sazonov V.V. and Sarychev V.A. Periodic solutions of the almost autonomous systems of 
ordinary differential equations. Preprint In-ta prikl. matematiki Akad. Nauk SSSR, Moscow, No. 
90, 1977. 
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In the approximate system with the Hamiltonian (2.1) in which we neglect all termswhichhave 
not been written out, we have the solution qi’=pi’= 0 (i=t, . . 11 n:i #mm), and the variation 
in qm’ and P,,,'is determined by the Hamiltonian function 

(2.2) 

Passing to polar coordinates in accordance with the formulas qn< = )%sin (p, Pm' =1/~cOS(P , we 
obtain (2.2) in the form 

H = a,o,,,r + lmmrz f I/.$ j.62 [f (-1) sin ((p -+- iv& -I- 
g (-4) cos (cp + IV&) + f (+1) sin ((p - zv,4 i- g (S 11 X 
cos ((p - N, i)l 

(2.3) 

where the quantities f(a,,J, g(cr,) (o, = &I) are obtained from the formulas (1.6). 
The variable change r, cp -+p, 8 defined by the generating function 

according to the formulas 

eliminates from the Hamiltonian (2.3) the terms containing sin(q + cmNot), cos(cp + o,,N,,t). In 
the variables p,@ the approximate system has the following Hamiltonian: 

Further, the substitution p = R, 8 =1) + a,N,t -00 yields the autonomous system 

(2.51 

with Hamiltonian function 

H = CJ,ER -j- l,,R2 + V&f?%6 COSI# (2.6) 

If the solution R,,$, of the system (2.5) corresponds to the position of equilibrium, then we 
obtain the following 2s-periodic solutions in the variables 9, and pi : 

Qnt "=~~2rS,sin(o,N,t+~,-68,)~..., qi"=O+..- 
(i= %,...,n;i+m) 

(2.7) 

&In; = 1/21f,cos (o,rV,t + *l‘o - 0,) i_ . . ., pi0 = 0 + . . . 

From (2.5) it follows that I& = 0 orqo = s, andR, satisfies the equation 

c,E. 
23-t.~Z+~- P* -_o (zcos &= @Y&) (2.8) 

mm mm 

where we assume that the coefficient l,,#O. 
In what follows we shall limit ourselves to investigating the periodic solutions passing, 

at p = O,to the position of equilibrium Ei = ni = 0 of the generating system. Equation (2.8) 
has either one, or three real roots, depending on whether its discriminant 

is positive or negative, respectively. From (2.7) and (2.8) it follows that when D<O (D>O), 
then three (one) 2ndperiodic solutions (solution) exist(s). The equation of the branching 
curve D =O has the form 
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Fig.1 

(2.9) 

The Fig.1 depicts schematically the curves D = 0 in the para- 
meter plane e, p (a,=+l). Solid lines depictthecurvesatl,,<O, 

E 
and the dashed lines at l,, >O. The shading shows the domains 
of existence of three periodic solutions. 

Taking into account the notation introduced above, we can 
finally write the 2 - n periodic solutions (2.7) in the form 

Pm" = zsin (urnNot - 0,) + . . ., pi0 = 0 + . . . (2.10) 
(i = 1, . . .( n; i#m) 

Pm0 = 2. cos (omNst - 0”) + . . .( pi0 = 0 + . . . 

where 9,, and 2 are given by the formulas (2.4) and equations (2.8) respectively. 
The expression (2.10) contains, in the explicit form, only the principal (of the order 

of p':*) terms, and repeated dots denote the terms of the order of at least ~~12. To include in 
(2.10) terms of the order of ~'18 and higher, we must restore in the Hamiltonian function (1.4) 
the neglected terms of the order of y'J* and higher respectively. If the coefficient l,, in 
the Hamiltonian function Ha of (1.4) is zero, then a sixth order form in tit ni must be includ- 
ed in the Hamiltonian (1.2). In terms of the normal coordinates qr and pi this form is 

H,=$ 2 lijk(q,“fpi”)(qj”+Pj2)(Qka-_Pka) 

In addition, we must demand that, when p = 0, then the system (1.1) be free of resonances of 
up to and including the sixth order. Carrying out the computations analogous to the case 
1 mm#O, we obtain the following equation for z from (2.10): 

45 E 2Ph z5++2+- 
%mm 

=o 
mmm 

3. A strict proof of the formal procedure of constructing the periodic solutions given 
in Sect.2 can be carried out with the help of the Poincar6's small parameter method /3-S/. 
It was found that the 2n-periodic solutions (2.10) of the system (1.1) constructed formally 
with the help of the normal forms, in the presence of resonance in the forced oscillationsand 
for sufficiently small in module values of p , indeed exist for all values of the parameters 
of the problem included in the discussion, except perhaps the branching curve D=O given by 
formula (2.9). No other 2rr--periodic solution passing at P=Oto the solution 5, = ni = 0 
exists in the system (1.1). 

We note that in the paper /4/, while studying periodic solutions in the systems close to 
the Liapunov systems, it was assumed that the quantity a = @,-IN, was of the order of uwhen 
a resonance was present, and the existence of a unique periodic solution passing at p = 0 to 
the position of equilibrium of the generating system, was established. In the presentcasewe 
have either one, or three periodic solutions. The disparity in the number of periodic solu- 
tions is caused by the fact that here the parameters p and E are assumed independent. Three 
periodic solutions exist inthecase when E is of the order of p',*. If E is of the first order 
with respect to p, then the system (1.1) has, at sufficiently small in module values of p 
only one periodic solution obtained in /4/. 

4. Let us consider the problem of stability of the periodic solutions (2.10), restrict- 
ing ourselves to analysing the stability in the linear approximation. In the process of con- 
structing the periodic solutions (2.10) we have assumed that when p = 0 , then the system (1.1) 
has no first order resonances except (I),,, = ;VO. In considering the problem of stability we 
shall also assume that the system (1.1) has also no second order resonances when p = 0, i.e. 

cioi + cjoj # +-N (N = 1, 2, . . .; I, j = 1, . . ., n) (4.1) 

and in the case i = j we have ifm. This implies the absence of multiple resonances in the 
system, hence the stability of periodic solutions described by the formulas (2.10) will be 
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determined by the part of the Hamiltonian function of perturbed motion depending on the vari- 

ables with index m. We study the stability by introducing the variables 9" and p" with help 

of the formulas q" = 1/msin$, p" = Jf$%coS$. The Hamiltonian function (2.6) now assumes the 
form 

(4.2) 

and the equilibrium solution of the system (2.5) can be written in the form 
- 

qo’=o, PO’ = 1/Z& C”S $0 = z 

Carrying now in the Hamiltonian (4.2) the variables change according to the formulas 

4'_ ?4, P" =Po' i- Y, we obtain the part of the quadratic form of the Hamiltonian function of 
perturbed motion, which depends on the variables with index m , in the form 

H,” = ‘/s (o,e - l,,po”a) y2 +m 1,s (G,,,E I 3Z,,po”2) Y2 

From this it follows that the necessary and sufficient condition for the stability of the per- 

iodic solutions (2.10) in the first approximation, in the absence in the system of resonances 

of the type (4.1), is that the following inequality holds: 

(amE + 1 m"lZz) (U,E + 34nmZ2) > 0 (4.3) 

where z is given by (2.8). From the condition (4.3) it clearly follows that in the case of 

an exact resonance (i.e when E = 0) , a unique periodic motion described by the formulas (2.10) 

is always stable in the first approximation. 

Let &#O. If 0,&Z mm>O (i.e.D>O), then (4.3) implies that the unique an-periodic 

solution existing in this case is always stable. The case o,,&, (0 should be investigated 

by the simultaneous study of the condition (4.3) and equation (2.8). Let us give 3 brief 

description of the results of investigating the stability of periodic solutions described by 

the formulas (2.10). If D >O,. then the unique periodic solution which exists, is stable 

for any value of 8. WhenD<O, three periodic solution (2.10) exist, with the amplitudes 

1% 1 (k = 1, 2, 3). We shall assume that zl>Zp>Z3. Then for p&,,,>O the periodic solution 

72.10) with amplitude 131 is unstable, and solutions with the amplitudes I z2 II I z3 I are 
stable. If PLn (0, then the periodic solutions with the amplitudes 121 j, I%1 are stable and 

the solution with the amplitude IQ/ is unstable. The results of investigating the stability 

of periodic solutions (2.10) are shown in the Fig.1 in the plane of parameters E,p (o,=+l). 

The crosshatched regions have three periodic solutions. When E and p are in region 3a, the 

periodic solution with the amplitude I.Q\ is unstable and those with the amplitudes IZ2/, 1%1 
are stable. In the regions 3b on the other hand, the periodic solutions with the amplitudes 

1 z1 1, Iz2 (are stable, and that with the amplitude 1 z3 /is unstable. On passing across the branch 

curves D = 0 from the crosshatched region of parameters S, p into the regions 1, the un- 

stable and stable periodic solutions merge at the branching line and vanish in the regions 1. 

5. In conclusion we shall describe, step by step, the procedure of constructing and in- 

vestigating the stability of periodic solutions in the case of a resonance present in the 

forced oscillations. 
1) determination of the problem's parameter values eliminated from the discussion, for 

which the initial system (1.1) has resonance relations of up to and includingthe fourthpower, 

described by the formulas (1.3), (1.4) and (4.1); 

2) normalization of the forms r2, r3, I',of the Hamiltonian (1.2) (determination of the co- 

efficients us,,,, b,, and 1,,); 
3) computation of f and g by means of the formulas (1.6); 

4) determination of the quantities Sin 8,, COSe,, 6 using the formulas (2.4); 

5) derivation of the branching curve equation using the formula (2.9); 

6) determination of the amplitude 12 lof periodic solutions (2.10) using the equation (2.8)j 

7) computation of the resonant periodic solutions from the formulas (2.10); 

8) computation of 2 n - periodic solutions in the initial variables &, qi; 

9) determination of the stability in the first approximation of periodic solutionsobtain- 

ed using Sect.4 and the Fig.1. 



The periodic solutions of the Hamiltonian systems 27 

REFERENCES 

1. BIRKHOFF G.D., Dynamic Systems. Am. Mathem. Sot., 1966. 
2. MARKBEV A.P., Libration Points in Celestial Mechanics and Cosmic Dynamics. MOSCOW, NAUKA, 

1978. 
3. POINU& A., Collected Works. Vol.1, New methodsincelestialmechanics. Moscow,NAUKA,1971. 
4. MALKIN I.G., Certain problems of the theory of nonlinear oscillations.Moscow,GOSTEKHIZDAT, 

1956. 
5. PROSKURIAKOV A.P., Poincare'smethodinthe theory of nonlinear oscillations.Moscow , NAUKA, 

1977. 
6. H&DER E., Matematische Untersuchungen zur Himmelsmechanik. Math. Z.B.31, H.2-3, 1929. 
7. CESARI L., Asymptotic Behavior and Stability Problems in Ordinary Differential Equations. 

3rd ed., Berlin, N.Y., Springer-Verlag, 1971. 
8. CESARI L., Functional analysis and periodic solutions of nonlinear differential equations. 

In: Contribution to Different. Equat. Vol.1, New York, 1963. 
9. HALE J.K., Oscillations in Nonlinear Systems. N.Y. McGraw-Hill, 1963. 
10. HALE J.K., Ordinary Differential Equations. New York, Wiley-Interscience, 1969. 
11. LEWIS D.C., On the role of first integrals in the perturbation of periodic solutions. Ann. 

Math. ~01.63, No.3, 1956. 

Translated by L.K. 


